|
심혈관질환을 진단할 수 있는 인공지능(AI) 모델이 개발됐다.
이 모델은 2004년부터 2014년까지 고려대 구로병원에 내원한 흉통환자 1만여 명의 관상동맥조영술 검사결과와 기초 임상정보를 바탕으로 개발됐으며, 관상동맥질환 위험도를 민감도 98.0%, 정확도 92.8%로 진단 가능하다. 기존에 개발되어 활용되고 있는 심혈관질환 위험도 계산모델의 진단 정확도는 70~80% 정도였다.
흉통 발생 시 수집 가능한 정보에 따라 질병의 위험도를 평가해 결과를 맞춤 활용 가능하다는 점도 이번에 개발된 인공지능 모델의 특징이다. 연구팀은 의료정보의 전문성에 따라 '개인평가모델,' '의료기관활용모델', '전문의 활용모델' 3가지를 개발했다. '개인평가모델'은 성별, 나이, 유병질환의 유무(고혈압, 당뇨, 고지혈증 등) 및 흡연여부 같은 간단한 질병정보만으로 관상동맥질환 위험도를 평가할 수 있어 신속한 진료과 선택 및 유병질환 관리에 도움을 줄 수 있을 것으로 기대된다. '의료기관활용모델'은 개인평가모델에 혈액검사 및 심전도검사 정보를 추가한 모델로, 1차 의료기관 및 응급의료 분야에서 빠르고 정확한 진단평가에 도움을 줄 수 있을 것으로 기대된다. '전문의 활용모델'은 급성심근경색, 협심증 등 대표적인 관상동맥질환의 징후를 판단할 수 있는 전문의의 임상진단 정보까지 추가된 모델로 관상동맥CT 및 심혈관 조영술 같은 정밀검사가 필요한 환자를 선별하고, 입원 환자 중 갑작스러운 사망이나, 심근경색 등 중대한 심혈관사건을 예방하는데 활용될 수 있을 것으로 전망된다.
이번 연구의 교신저자인 고려대 구로병원 심혈관센터 나승운 교수는 "미국과 유럽심장학회에서는 관상동맥CT나 심혈관조영술 같은 정밀검사 시행 이전에 질병확율 계산 프로그램 활용을 권고하고 있다"며 "이번에 개발한 인공지능모델은 한국인의 질병 특성을 학습한 것은 물론, 높은 정확도로 관상동맥질환 위험도를 수치화할 수 있어 고비용, 고위험을 수반하는 정밀검사 이전에 임상진료 보조시스템으로 활용될 수 있을 것으로 전망된다"고 말했다
이번 연구성과는 국제학술지인 'International Journal of Cardiology' 최신호에 온라인 게재됐다.
장종호 기자 bellho@sportschosun.com
|