딥 러닝(Deep Learning) 기술을 이용해 특수한 수술 상황에서 혈압 변화를 예측하고 신속하게 대응해 환자 예후를 향상할 수 있는 길이 국내 연구진에 의해 열렸다.
수술 중 높은 혈압 및 혈압 변화가 크면 환자 예후에 좋지 않은 영향을 미친다. 로봇을 이용한 하복부 장기 수술 시 복강 내 압력을 올리고 환자 머리를 바닥 쪽으로 기울인 자세를 취하는데, 이런 특수 환경에서는 혈압 변화를 예측하기가 더 어렵다.
최근 딥 러닝 기술을 이용해 수술 중 혈압 변화를 예측하려는 시도가 활발하나, 로봇을 이용한 하복부 장기 수술과 같이 복압과 체위 변화 등 변수가 많은 특수 환경에서 혈압 변화를 예측한 연구는 없었다.
'로봇 수술 시 혈압 변동 예측 모델'의 정확도를 검증한 결과, 그 유효성을 입증했으며 39개 상황의 예측값을 도출하는 데 걸린 시간이 3.472밀리초(ms, 1000분의 1초)에 불과해 혈압 변화에 대한 신속한 대응이 가능한 것으로 나타났다.
논문 제1저자인 정양훈 순천향대 부천병원 마취통증의학과 교수는 "이번 연구는 로봇 수술과 같이 특수한 수술 환경에서 혈압 변화를 예측한 첫 연구다. 이번 연구를 기초로 다른 특수한 수술 상황에서 혈압 변화를 예측하는 모델을 개발함으로써, 환자의 급격한 혈압 변화를 최소화하고 수술 예후를 향상할 수 있을 것으로 기대한다"고 말했다.
한편, 김상현 교수팀은 2018년부터 순천향대 빅데이터공학과 교수진과 협업을 통해 활발한 연구 활동을 하고 있다. 수술 중 수집한 생체신호와 각종 약물 투여 정보, 그리고 전자의무기록 데이터를 이용해 '기계학습을 통한 수술 중 혈역학적 변화 예측 모델'을 개발하고, 관련 논문을 SCI(E)급 국제학술지에 여러 차례 발표한 바 있다.
장종호 기자 bellho@sportschosun.com
|