KT가 14일 4대 '융합 AI 엔진'을 공개, 통신·제조·교통·물류 등 산업용 AI 시장 공략에 나선다고 밝혔다. 4대 AI엔진은 '네트워크 AI', '기가트윈(Giga Twin)', '로보오퍼레이터(Robo-Operator)', '머신닥터(Machine Doctor)'다.
KT는 고객이 문제를 확인하고 고객센터에 신고하지 않아도 AI가 먼저 확인해 스스로 문제를 해결할 수 있는 '자정능력'을 가진 네트워크를 만들기 위해 네트워크 AI 엔진을 개발했다.
네트워크 AI 엔진은 요약된 문구·문장으로 되어 있는 수만 가지의 장비 경보 패턴을 수학적으로 모델링해 학습했다. 정상 상태와 학습한 데이터가 얼마나 유사한지 비교하는 방식으로 인간 수준의 장애 예측 및 복구를 위한 조치사항을 도출해내는 방식이다.
과거 사람의 경험, 역량에 의존 했다면 앞으로는 설계, 구축, 설정과 운용까지 지능화가 가능한 모든 네트워크 업무를 완벽한 AI 기술로 구현하는 것이 네트워크 AI 엔진의 진화 방향이라는 게 KT의 설명이다.
KT는 향후 네트워크 AI 엔진을 활용해 네트워크 AI 솔루션, 소프트웨어 정의 네트워킹(Software Defined Networking, SDN)등 이 통합된 새로운 B2B 플랫폼을 만들어 국내외 기업 전용 네트워크 및 솔루션 시장을 공략할 계획이다.
기가트윈은 자가진화 기능이 담긴 디지털트윈 AI 엔진이다. 실물과 가까운 시뮬레이션 모델을 만들고 실황과 가까운 예측 데이터를 제공해 최적화에 도움을 준다. 특히 적은 데이터로 초기 학습 모델을 빠르게 구축할 수 있고 이후 쌓이는 데이터를 가지고 강화 학습을 하는 등 스스로 진화한다. 최신 이슈를 지속적으로 반영할 수 있다는 장점을 갖고 있다. 기가트윈을 교통 분야에 적용하면 공간 모델을 만들어 전국의 실시간 도로 상황을 분석하는 것이 가능하다. 2시간 이후의 교통 흐름 변화를 정확도 88% 수준으로 예측할 수 있다.
로보오퍼레이터는 설비제어에 특화된 AI 엔진으로 복잡한 설비 구조를 빠르게 학습해 목적에 맞는 최적화된 제어 솔루션을 제공해준다. 딥러닝이 설비들의 상호관계를 학습하고 설비의 가동·정지 시점과 설정 값 등을 빌딩 자동화 시스템에 전달해 에너지 절감 효과를 극대화한다. 다양한 설비(냉난방설비, 전력설비, 생산설비, 공정설비, 신재생설비 등)와 쉽게 연동되는 것이 장점이다.
머신 닥터는 사운드, 진동, 전류 등의 데이터를 분석하여 기계의 결함을 학습하고 어떤 부분을 고쳐야 할지 직접 진단해준다. 머신 닥터에는 고객의 설비 환경에 대해 스스로 학습하고 맞춤 형태로 조언해 주는 셀프러닝(Self-Learning) 기능이 탑재돼 있다.
KT는 4대 융합 AI 엔진을 기반으로 통신·비통신 산업 현장에 적용될 새로운 AI 기술과 솔루션을 더 빠르고 똑똑하게 개발하기 위해 'KT브레인허브(KT Brain Hub)'도 구축한 상태다. KT브레인허브는 웹 페이지로 'AI 학습용 데이터' 플랫폼이다.
KT브레인허브는 AI 학습용 데이터에 대한 정보를 공유하고 수집해 가공 데이터로 제공한다. KT브레인허브에는 네트워크 인프라, 에너지, 빌딩 설비, 음성 인식, 영상 인식 데이터 등 AI 학습 데이터가 저장돼 있다. 이미지, 비디오, 오디오, 텍스트 등 데이터 유형과 종류에 따라 분류돼 있어 AI 개발자가 원하는 데이터에 쉽게 접근 할 수 있다는 것이 이 플랫폼의 장점이다.
KT 관계자는 "음성인식 등의 인터페이스 AI 기술뿐 아니라 산업 현장에 특화된 융합 AI 엔진과 산업 별 데이터 자원 및 플랫폼을 가지고 있다"며 "보유한 AI기술력을 발판으로 통신·비통신 산업의 생산성과 효율성을 높이고 더 나아가 최적의 의사결정을 지원하는 솔루션을 제공해 플랫폼 시장의 혁신을 이끌어 나갈 계획"이라고 말했다.
김세형 기자 fax123@sportschosun.com
무료로 보는 오늘의 운세