[스포츠조선 장종호 기자] 분당서울대병원 정신건강의학과 박혜연 교수팀이 코로나19로 격리 입원한 환자들에게서 초기에 섬망 발생을 예측하는 기계학습(머신러닝) 모델을 구축했다.
최근 연구에 따르면 코로나19 중증 환자의 섬망 비율은 55%에서 70%에 이르며, 이 중 약 30%가 수개월 이상 섬망을 경험하는 것으로 보고되고 있다.
이에 박혜연 교수팀은 4개 병원에 코로나19로 격리입원한 878명의 복용약물, 기저질환, 영상/혈액 검사 등 93가지 섬망 요인을 활용해 코로나19 격리입원 환자의 섬망 발생을 예측하는 모델을 개발하는 연구를 수행했다.
또한 단순 예측을 넘어, 환자의 개별적 위험인자를 확인하고 약물을 비롯해 조절 및 중재 가능한 요인들이 무엇인지 제안해주는 기능도 있다. 연구 결과에 따르면 코로나19 환자의 섬망 발생 위험을 높이는 주요 인자는 9개가 있으며, 이 중에서 약물(항정신병, 항생제, 진정제, 해열제), 기계적 환기(인공호흡), 혈중 나트륨 감소가 특히 위험한데, 머신러닝이 이러한 지표에 이상이 있을 경우 경고해주는 식이다.
박혜연 교수는 "섬망은 코로나19 등 급성 감염병으로 인한 격리 환자에게서도 잘 나타나고 이는 의학적 경과악화, 낙상 등으로 격리입원 기간을 연장시킨다"며 "이번 예측 모델을 활용한다면 환자별 위험요소를 사전에 파악하고 약물을 조절할 수 있어 섬망 발생을 최소화할 수 있을 것"이라고 밝혔다. 이어 "머신러닝 모델이 실제 임상 현장에서 활용될 수 있도록 검증 연구를 수행할 예정"이라고 밝혔다.
한편 이번 연구는 보건복지부의 '환자중심 의료기술 최적화 연구사업'의 지원으로 진행됐으며, SCIE 국제학술지인 '디지털 헬스(Digital Health)'에 최근 게재됐다.
장종호 기자 bellho@sportschosun.com
|